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Abstract

Around 75% to 90% of people who experience a traumatic brain injury (TBI) are classified as having a mild TBI (mTBI).

The term mTBI is synonymous with concussion or mild head injury (MHI) and is characterized by symptoms of headache,

nausea, dizziness, and blurred vision. Problems in cognitive abilities such as deficits in memory, processing speed, executive

functioning, and attention are also considered symptoms of mTBI. Since these symptoms are subtle in nature and may not

appear immediately following the injury, mTBI is often undetected on conventional neuropsychological tests. Current

neuroimaging techniques may not be sensitive enough in identifying the array of microscopic neuroanatomical and subtle

neurophysiological changes following mTBI. To this end, electrophysiological tests, such as auditory evoked potentials (AEPs),

can be used as sensitive tools in tracking physiological changes underlying physical and cognitive symptoms associated with

mTBI. The purpose of this review article is to examine the body of literature describing the application of AEPs in the

assessment of mTBI and to explore various parameters of AEPs which may hold diagnostic value in predicting positive

rehabilitative outcomes for people with mTBI.
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Introduction

Traumatic brain injury (TBI) is an acquired injury to the
brain that can occur following sudden trauma to the
head (National Institute of Neurological Disorders and
Stroke, 2017). The extent of brain injury is typically
determined during the acute phase following neuro-
trauma. Based on the clinical indices of the Glasgow
Coma Scale (GCS) and the post-traumatic amnesia
(PTA) duration, severity of TBI is categorized as mild,
moderate, or severe. The GCS is recorded as a composite
score consisting of three individual components: eye-
opening, verbal response, and motor response. A GCS
score in the range of 13 to 15 is interpreted as mild
TBI (mTBI), 9 to 12 as moderate TBI, and 3 to 8 as
severe TBI (Teasdale & Jennette, 1974). The duration
of PTA refers to the time interval between the injury
and when the person is oriented and able to form and
recall new memories. A PTA of less than 24 h is

categorized as mTBI, 1 to 7 days as moderate TBI, and
more than 7 days as severe TBI (Friedland, 2013;
Nakase-Richardson et al., 2011). mTBI is used inter-
changeably with other terms, such as mild closed head
injury, MHI, or concussion, all of which represent the
same level of brain dysfunction (Nuwer, Hovda,
Schrader, & Vespa, 2005). The Mild Traumatic Brain
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Injury Committee of the American Congress of
Rehabilitation Medicine (1993) defines mTBI as:

A condition in which a person has sustained a traumat-

ically induced physiological disruption of brain function,

as manifested by at least one of the following: 1) any

period of loss of consciousness; 2) any loss of memory

for events immediately before or after the accident; 3)

any alteration in mental state at the time of accident;

and 4) focal neurological deficit(s) that may or may not

be transient. (p. 86)

The public health impact of mTBI is significant.
Around 1.6 to 3.8 million sports and recreation-related
concussions are reported every year (Langlois, Rutland-
Brown, & Wald, 2006; UPMC Sports Medicine, 2019).
According to a report from the Defense and Veterans
Brain Injury Center (2017), mTBI accounted for about
312,000 of the total 380,000 TBIs recorded in combat
operations during a 17-year time frame between 2000
and 2017. It is estimated that around 75% to 90% of
all TBIs are classified as mild, thus making mTBI the
most common type of brain injury overall, yet around
50% to 90% of these cases go undetected (Centers for
Disease Control and Prevention, 2017; National Center
for Injury Prevention and Control, 2003; Prince &
Bruhns, 2017).

People with mTBI often experience postconcussion
syndrome, characterized by a complex set of symptoms
that may appear and persist for days, weeks, and even
months following brain injury. These secondary symp-
toms mainly include nausea, confusion, dizziness,
blurred vision, headaches, agitation, and mood changes
(Centers for Disease Control and Prevention, 2017;
National Institute of Neurological Disorders and
Stroke, 2018). In addition, people with mTBI may also
experience problems in cognitive abilities including
memory, attention, executive functioning, and process-
ing speed (Gaetz & Bernstein, 2001; Mathias, Beall, &
Bigler, 2004; Mathias & Wheaton, 2007; Tulsky et al.,
2017). The availability of a wide spectrum of neuropsy-
chological instruments for assessing these cognitive
domains has made it possible to identify and differentiate
cognitive impairments associated with moderate and
severe TBI (Benedict, 1997; Delis, Kaplan, & Kramer,
2001; Gronwall, 1977; Heaton, Chelune, Talley, Kay, &
Curtiss, 1993; Shallice, 1982; Wechsler, Coalson, &
Raiford, 2008). However, detecting cognitive profiles
associated with mTBI still remains a challenge. There
are two potential reasons for this limitation. First,
mTBI symptoms may be transient and not appear imme-
diately following the injury, making it difficult to obtain
a reliable cognitive profile of the individual with sus-
pected mTBI. Second, cognitive impairments associated
with mTBI often show significant variability within an

individual and across groups of individuals with a similar
mTBI profile, as determined by premorbid cognitive func-
tioning levels, heterogeneity in the etiology of mTBI (e.g.,
motor vehicle accident vs. a blast exposure during combat),
and diffuse neuronal damage. This variability poses limita-
tions to standardizing neuropsychological tests for use in
mTBI assessment protocols (Iverson, Holdnack, & Lange,
2013; Prince & Bruhns, 2017; Tulsky et al., 2017).

To address some of the limitations related to existing
neuropsychological tests, the National Institutes of
Health Toolbox for the Assessment of Neurological
and Behavioral Functioning Cognition Battery
(NIHTB-CB; Gershon et al., 2013) was tested in a
group of 182 individuals with TBI (Tulsky et al., 2017).
The authors identified that a small assortment of neuro-
psychological tests may provide a robust estimate of
cognitive functioning in people with TBI, regardless of
the severity. These tests included a set of composite
scores indexed across multiple measures of various cog-
nitive domains, including memory, attention, and execu-
tive functioning. The aim of the study was to establish a
construct validity and clinical utility of using NIHTB-CB
in people with mTBI. However, three main challenges
remain in adapting the toolbox in the evaluation of
people with mTBI. First, participants were tested for a
total of 8 h over a period of 2 days. This type of test
duration poses a serious concern regarding the ecological
validity of using this battery of tests in people with
mTBI, given that extensive testing may lead to declines
in cognitive performance, which may be incorrectly
attributed to cognitive impairments. Second, the authors
testing NIHTB-CB suspect that the assessment may
underestimate cognitive impairment in some domains
such as processing speed. Third, the assortment of tests
within NIHTB-CB fails to account for previous exposure
to similar neuropsychological tests that might have influ-
enced test performance in current testing sessions.

Conventional neuroimaging techniques are designed
to identify structural and functional brain changes.
Neuroimaging findings of a person with suspected TBI
are often linked with neuropsychological data for the
purposes of obtaining concurrent validity (Eierud
et al., 2014). Some of the common neuroimaging tech-
niques used in the evaluation of moderate to severe TBI
are computerized tomography (CT), functional magnetic
resonance imaging (fMRI), single photon emission com-
puted tomography, magnetoencephalography, and posi-
tron emission tomography. However, these tools may
not be sensitive enough to detect the array of micro-
scopic neuroanatomical and subtle neurophysiological
changes that occur at the micron and nanometer cellular
level in mTBI.

Neuroanatomical changes in mTBI are attributed to
the acceleration or deceleration forces that cause diffuse
neuronal injury—an important factor that presents
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additional challenges for injury detection using neuroi-
maging techniques. While the CT scan has been recom-
mended as the neuroimaging procedure of choice in
TBI assessment, repeated exposure to harmful ionizing
radiation and difficulties in assessing children and young
adults pose additional limitations to wider use of the
procedure. Conventional fMRIs in clinical setups such
as T-2 and T-1 weighted structural scans index both
structural and functional data of neuronal changes
following mTBI and pose no health risk to people
undergoing the procedures. However, fMRI scans are
time-consuming, expensive, and insufficient in providing
supplemental information beyond findings obtained
from CT scans. Taken together, limitations concerning
the lack of sensitivity and specificity at the individual
patient level and concerns with ecological validity have
presented important challenges to developing mTBI
diagnostic tools based on neuroimaging techniques
(Bigler, 2004; Eierud et al., 2014; Holmes, Goodacre,
Stevenson, Pandor, & Pickering, 2012).

Electrophysiological tests, such as auditory evoked
potentials (AEPs), offer hope as potential sensitive assess-
ment tools in identifying the fine-grained neurophysio-
logical changes and diffuse neuroanatomical aberrations
accompanying mTBI deficits. The purpose of this review
article is to provide an overview of the application of AEPs
in the assessment of mTBI and to explore various param-
eters of AEPs which may have diagnostic value in the
assessment of mTBI. To this end, the review covers import-
ant AEPs which have shown promise in testing people with
mTBI. They include auditory brainstem response (ABR),
complex ABR, auditory middle latency response (AMLR),
and auditory late latency response (ALLR) subsuming N2
and P300. The review excludes AEPs that were not tested
in mTBI, such as mismatch negativity, N-400, P-600, and
auditory steady-state response.

AEPs in mTBI Assessment

The most common neurocognitive problems observed in
individuals with mTBI are associated with memory,
attention, and processing speed (Gaetz & Bernstein,
2001; Mathias et al., 2004; Mathias & Wheaton, 2007).
The neural correlates corresponding to these cognitive
domains are innately intertwined to the auditory path-
way, and efficient auditory processing is contingent upon
fast and well-coordinated integration of several neural
systems. AEPs have been established as sensitive tools
for detecting neural aberrations in the auditory pathway.
They offer a precise recording of the synchronicity of
neural firing events throughout the auditory nerve,
from the cochlea to cortex (Kraus & White-Schwoch,
2015). This level of sensitivity is crucial as it has been
shown that the physiological functioning may still be
impaired despite normal performance on traditional

cognitive assessments in mTBI (Segalowitz, Bernstein,
& Lawson, 2001). Thus, we infer that AEPs have the
potential to be used as assessment tools, in conjunction
with other neuropsychological and neuroimaging tests in
obtaining a sophisticated mechanistic picture of neuro-
physiological and neurocognitive deficits in mTBI. We
provide a brief review of the commonly used AEPs and
their potential role as assessment tools in mTBI
evaluation.

AEPs can be classified into early, middle, and late
latency types. Early AEPs include the ABR, elicited
using simple and complex auditory stimuli; middle
AEPs include the AMLR, and late AEPs include the
ALLR or auditory event-related potentials. Early AEPs
are used to evaluate the integrity of the cochlea, auditory
nerve, and brainstem auditory pathways, while middle
AEPs are used to measure auditory cortical functions.
Late AEPs are used to evaluate functional brain activity
and record changes in information processing due to dif-
fuse axonal injury (Gaetz & Bernstein, 2001).

Early AEPs

Noseworthy, Miller, Murray, and Regan (1981) con-
ducted one of the earlier ABR studies in people with
TBI. Participants included 11 people with postconcus-
sion status and 12 matched controls. A significantly
delayed latency of Waveform III was recorded in
people with postconcussion. These results indicated the
involvement of higher neural centers, such as the super-
ior olivary complex (a generating site for Waveform III)
in a concussion. In another study, Munjal, Panda, and
Pathak (2010) recorded binaural ABRs from 290 partici-
pants with TBI (150 with mTBI, 100 with moderate TBI,
and 40 with severe TBI) and 50 matched participants
with no hearing or neurocognitive problems. ABRs
were recorded in both ears separately. GCS was used
to classify participants into mild, moderate, and severe
TBI groups. The results showed positive associations
between the severity of TBI and prolonged Waveform
V and I–V interwave latencies in the right ear. The side
of impact on the head was not documented in the study,
making it difficult to explain differences between the
right and left ears in terms of absolute and interwave
latencies. In summary, the findings of this study indicate
the involvement of the brainstem as a direct consequence
of the severity of TBI.

Gallun et al. (2012) studied the efficacy of ABRs in
detecting deficits in the cochlear structures and central
auditory pathway in 19 military personnel with a history
of mTBI following blast exposure and 29 control partici-
pants with no history of mTBI. The authors reported no
significant differences in the latencies and amplitudes of
Waveforms I, III, and V between the blast-exposed and
the control group. In some studies, researchers have
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suggested that ABRs offer no significant prognostic
information in the assessment of individuals with
mTBI or even with those with severe TBI (Cusumano
et al., 1992; Gaetz & Weinberg, 2000; Haglund &
Persson, 2009; Keren, Sazbon, Groswasser, & Shmuel,
1994; Nölle, Todt, Seidl, & Ernst, 2004; Werner &
Vanderzant, 1991). It should be noted here that such
inconsistencies in results across the studies may stem
from the variability in time intervals between the brain
injury and ABR assessment, as well as the variability in
the site of lesion among participants with mTBI (e.g.,
brainstem vs. cortical lesions; Hall, Speilman, &
Gennarelli, 1982; Musiek, Baran, & Shein, 2004).

Another important parameter in ABR acquisition is
the rate of stimulus presentation. A high rate ABR
protocol is typically used in diagnosing retro-cochlear
pathology. Thus, it can be expected that high rate
ABRs may have better sensitivity in detecting changes
in neural synchrony due to a lesion or injury following
mTBI. Podoshin, Ben-David, Fradis, and Pratt (1990)
examined ABR recordings in 15 people with minor
head trauma and 35 people without a history of brain
injury. ABRs were elicited at two different stimulus rates
(10/s and 55/s). Follow-up ABR recordings were per-
formed on the same individuals with minor head
trauma after 2 months. It was observed that there were
no significant differences in interwave latencies V-I, III-I,
and V-III at a stimulus rate of 10/s. However, there was a
significant delay in all three interwave latencies at a
stimulus rate of 55/s, specifically recorded in the first
testing session. It can be noted here that an ABR with
an increased stimulus rate is sensitive to changes in syn-
aptic efficiency secondary to ischemic changes, while an
ABR with a low stimulus rate (e.g., 10/s) is more sensi-
tive to white matter lesions in TBI (Podoshin et al., 1990;
Rosahl, Schuhmann, Thomas, Brinker, & Samii, 1998).

Frequency Following Response

ABR recordings typically involve using transient and
simple stimuli. However, brainstem responses can also
be evoked using complex stimuli with long durations
(e.g., speech sounds, music, and amplitude-modulated
sounds). Such brainstem responses are also known as com-
plex auditory brainstem responses (cABRs). A cABR
waveform consists of an onset response, a frequency fol-
lowing response (FFR), and an offset response. Given that
FFR is a crucial component of cABRs, these terms have
been used interchangeably as well (Anderson & Kraus,
2013; Skoe & Kraus, 2010). The neural generators of
FFRs change with the modulation frequency. The audi-
tory cortex is the primary generator of FFRs at modula-
tion rates �40Hz. FFRs obtained with 70 to 150Hz
modulation frequency reflects sustained phase-locked
activity to the individual cycles of the stimulus waveform

or the envelope of periodic stimuli in the brainstem
(Holmes & Herrmann, 2017; Moushegian, Rupert, &
Stillman, 1973; Smith, Marsh, & Brown, 1975).
Recently, FFRs have also been used to elucidate deficits
in sound processing with extreme granularity (Banai,
Nicol, Zecker, & Kraus, 2005; Kraus et al., 2016).

Kraus et al. (2016) showed that FFRs have the poten-
tial to be used as an auditory biological marker of con-
cussion in children. The study included 20 children with
a history of concussion and 20 children without concus-
sion history. Inclusion criteria for both groups entailed
that participants had no history of hearing problems,
neurological diseases, or severe TBI. FFRs were rec-
orded from the right ear using a 40ms sound/d/ delivered
through insert earphones at 80.4 dB SPL. The
Post-Concussion Symptom Scale was administered to
all participants from the concussion group to assess the
symptom load. The concept of symptom load refers to
the sum total of the intensity of symptoms subsuming
neurocognitive, emotional, and somatic domains. The
scale included a total of 19 symptoms, with higher
scores indicating greater symptom loads. The FFRs of
children with concussion exhibited poorer pitch coding
and delayed smaller neural responses than children with-
out a history of concussion. The results of the study sug-
gested that neural processing of the auditory stimuli
correctly identifies 90% of the concussion and clears
95% of the control population. Thus, it can be construed
that FFRs hold the potential to be a reliable biological
marker of concussion. However, further studies are
required to confirm the validity of FFR markers in dif-
ferent populations with mTBI.

In summary, we infer that early AEPs show potential
diagnostic utility in mTBI. Specifically, ABRs with a
higher stimulus repetition rate will further augment
AEP recordings by indexing synchronicity of neural
firing events at a finer level during cognitive perform-
ance. The main challenge will be to attenuate the influ-
ence of noise during data acquisition resulting from
higher stimulus repetition rates (more than 100 stimuli
per second). Algorithm-based novel techniques such as
continuous loop averaging deconvolution and maximum
length sequencing have been used to suppress noise and
recover transient AEPs from the data (Peng, Yuan,
Chen, Wang, & Ding, 2017). Lastly, investigating the
potential influence of different types of auditory stimuli
like clicks and tone bursts (frequency specific stimuli) at
various presentation rates and levels will offer new
insights into understanding deficits in central and periph-
eral auditory pathways of people with mTBI.

Middle AEPs

AMLR is a middle AEP mainly used for evaluating audi-
tory cortical functions. It is engendered from the medial
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geniculate body of the thalamus, inferior colliculus, pri-
mary auditory cortex, thalamocortical tracts, and lateral
supratemporal gyrus (Kraus & McGee, 1990; Musiek,
Geurkink, Weider, & Donnelly, 1984). Typically, an
AMLR waveform comprises a total of four constituent
waveforms: Two negative waveforms labeled Na and Nb
and two positive waveforms labeled Pa and Pb/P50. The
Pb/P50 waveform of AMLR is the same waveform as P1
of the ALLR. Waveforms of individual AEPs are shown
in Figure 1.

There is evidence to show that AMLR generator
regions in the brain may be affected in mTBI, highlighting
the diagnostic value of using AMLRs in the evaluation of
people with mTBI (Drake, Weate, & Newell, 1996;
Soustiel, Hafner, Chistyakov, Barzilai, & Feinsod,
1995). Soustiel et al. (1995) tested 40 participants with
mTBI using brainstem AEPs and AMLR. Participants
were examined in two sessions: first, 2 days following hos-
pital admission and second, at 3 months following injury.
Results showed significantly prolonged Na and Pa wave-
forms of AMLRs in 15 out of 40 participants. The
authors suggested the involvement of diencephalic and
paraventricular structures (indexed by abnormal AMLR
waveforms) as a plausible pathological basis for some of
the postconcussion symptoms, such as memory problems
observed in people with mTBI. Drake et al. (1996) studied
AMLRs in 20 people with a history of concussion and

20 people without any history of brain trauma. AMLR
recordings in people with concussion showed reduced
amplitudes of Na and Pa AMLR waveforms and signifi-
cantly longer Pa latency compared with participants with-
out brain injuries. The authors suggested that amplitude
reduction of Na and Pa waveforms may indicate posttrau-
matic disturbances in subcortical AMLR generators or in
frontotemporal cortical structures that modulate them.
Further, there is evidence to show that the phenomenon
of amplitude reduction of Na and Pa waveforms of
AMLRs may be associated with increasing severity of
TBI, thus underlining the potential role of AMLRs as
one of the main evaluation systems in establishing both
the severity of TBI and the associated auditory dysfunc-
tion in mTBI assessments (Munjal et al., 2010).

In addition to the Na and Pa waveforms, the AMLR
P50 waveform, which is generated from Heschl’s gyrus of
the temporal lobe, may be crucial in recording neuro-
physiological events accompanying mTBI (Korzyukov
et al., 2007). The P50 waveform has been used as a
sensitive measure to evaluate auditory sensory gating—a
phenomenon that refers to the inherent ability of the
auditory system in preventing incoming irrelevant audi-
tory information from reaching the auditory cortex, thus
ensuring relevant auditory processing. It is suspected
that persistent attention and memory impairments
accompanying TBI may lead to an impaired auditory

Figure 1. Schematic representation of early, middle, and late auditory evoked potentials.
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sensory gating regardless of severity. Therefore, the P50
waveform can be used in obtaining objective and relative
measures of auditory sensory gating and record deficits
in attention and memory accompanying mTBI (Adler
et al., 1998; Boutros, Overall, & Zouridakis, 1991;
Judd, McAdams, Budnick, & Braff, 1992). Arciniegas
et al. (2000) assessed auditory sensory gating using
AMLR on a group of 20 participants with TBI: five
with mTBI, six with moderate TBI, and nine with
severe TBI. The severity of TBI among participants
was defined using the duration of PTA. The AMLR
findings of this group were compared with the findings
of the nonbrain-injured control group (n¼ 20). The find-
ings of this study revealed reduced sensory gating in the
TBI group when compared with the control group.
Interestingly, the mild, moderate, and severe subgroups
of this study revealed similar degrees of impaired audi-
tory gating.

In contrast to the earlier findings, two studies have
shown no evidence of significant AMLR changes in
people with head trauma (Gaetz & Weinberg, 2000;
Musiek et al., 2004). We argue that such inconsistencies
with respect to AMLR findings among individuals with
and without mTBI may be attributed to the differences in
the site of lesion (e.g., peripheral vs. central), test proto-
cols, and the time interval between the brain injury and
AMLR assessments (Hall et al., 1982; Musiek et al.,
2004). Future studies in this line of research will need
to address the above confounds when considering
AMLRs as a potential tool for assessment of individuals
with TBI. At present, the Pb waveform of AMLR holds
promise in capturing auditory sensory gating data, which
may have imminent application in the assessment and
rehabilitation of people with mTBI.

Late AEPs

ALLRs or auditory event-related potentials are a type of
late AEPs. The major waveforms of the ALLR range
from about 100 to 600ms following stimuli presentation.
The major waveforms of the ALLR include N1, P2, N2,
and P300 (also known as P3), although some researchers
consider P1 to be the part of the ALLR (Nelson, Hall, &
Jacobson, 1997; Polich, Aung, & Dalessio, 1988; Purdy,
Kelly, & Davies, 2002). The amplitudes and latencies
of these waveforms have been used as reliable indices
of auditory stimulus processing. Higher amplitudes of
ALLRs reflect the allocation of greater attentional
resources in stimulus processing, while delayed latency
of ALLRs represents slowed sensory and cognitive pro-
cessing (Duncan, Kosmidis, & Mirsky, 2005; Mazzini,
2004; Pratap-Chand, Sinniah, & Salem, 1988). ALLRs
have also been used to test cognitive deficits associated
with TBI including auditory memory, attention, and pro-
cessing speed (Clark, Ohanlon, Wright, & Geffen, 1992;

Mazzini, 2004; Potter & Barrett, 1999; Pratap-Chand
et al., 1988; Solbakk, Reinvang, Nielsen, & Sundet,
1999). The generators of ALLR waveforms are described
in Table 1.

ALLRs are most commonly elicited by auditory two-
tone and three-tone oddball tasks. In terms of P3 wave-
forms, the auditory two-tone oddball task evokes either
P3a or P3b, and the auditory three-tone oddball task
simultaneously elicits both P3a and P3b waveforms.
While P3a is typically elicited by an infrequent and unin-
structed novel stimulus, P3b is indexed by an instructed
and infrequently presented target stimulus (Polich, 2004,
2007). There is evidence to show that P3a is associated
with the efficient allocation of attentional resources to
new auditory stimuli (Kopp, Tabeling, Moschner, &
Wessel, 2006). On the other hand, P3b is associated
with stimulus evaluation and allocation of attentional
resources while updating working memory (Broglio,
Moore, & Hillman, 2011).

Studies using ALLRs have been at the forefront of
electrophysiological research for almost 30 years.
Pratap-Chand et al. (1988) compared P3b between 20
participants with mTBI and 20 matched control partici-
pants with no history of brain injury. They observed a
significant delay in the P3b latency and reduction in P3b
amplitude in the postconcussion period in people with
mTBI. However, these delays and reductions in latency
and amplitude of waveform P3b diminished completely
on repeat testing, indicating that P3b is sensitive to cere-
bral dysfunction in mTBI and the potential recovery
phase that may ensue over time. In a similar study,
Solbakk et al. (1999) studied information processing
and sustained selective auditory attention in participants
with MHI, verified frontal lobe damage, and matched
controls. They defined MHI as any blow to the head
forcing one to stop whatever one was doing. A dichotic
listening task was used to index cortical AEPs. The
results of this study revealed significantly reduced N2
and P3 amplitudes in participants with MHI compared
with participants with frontal lobe damage and non-
brain-damaged controls, reconfirming the notion that
people with mTBI have deficits in focused sustained
auditory attention and auditory information processing.

Segalowitz et al. (2001) examined the attentional cap-
acity of university students with a history of mTBI

Table 1. Generators of Auditory Late Latency Response.

Components Latency Neural generators

N1 75–140 ms Auditory cortex

P2 150–230 ms Auditory cortex

N2 150–250 ms Auditory cortex, frontal cortex

P300 250–350 ms Reticulothalamus, frontal cortex,

and medial septal area
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(n¼ 10) and no self-reported neurocognitive impairment
(n¼ 12). The average time postinjury in the mTBI group
was 6.4 years. Experimental protocol included adminis-
tration of four auditory three-tone oddball tasks and
neuropsychological tests, such as Wechler Adult
Intelligence Scale-Revised (WAIS-R; Wechsler, 1981)
and the Woodcock Johnson Psycho-Educational
Battery: Tests of Cognitive Ability (Woodcock &
Johnson, 1977). In addition, three self-reported question-
naires assessing memory and attention were adminis-
tered. It was observed that people with mTBI showed
significantly reduced amplitudes of P3a and P3b
compared with matched controls, while no significant
difference was observed in cognitive performance on
neuropsychological tests. The results of the study are
important for two reasons. First, cognitive problems,
especially related to attentional performance, may con-
tinue to persist in people with mTBI several years fol-
lowing injury. Second, ALLRs are a sensitive tool that
can index cognitive declines that may be missed during
routine neuropsychological tests. Similar results of
delayed P3 responses have been observed in military vet-
erans with a history of blast exposure, reconfirming ear-
lier evidence on blast-induced mTBI affecting high level
auditory and cognitive processing (Eskridge et al., 2012;
Folmer et al., 2014; Gallun et al., 2012; McCrea et al.,
2009; Papesh, Billing, Folmer, & Gallun, 2016).

In addition to people with experience serving in the
military, a relatively higher prevalence of mTBI is
observed among athletes, who are vulnerable to sports-
related injuries. A range of postconcussion symptoms is
commonly found in this population, including slower
information processing, impaired focused attention,
problems on tasks involving divided attention, and over-
all inconsistency in cognitive performance (Gosselin,
Thériault, Leclerc, Montplaisir, & Lassonde, 2006;
Thériault, De Beaumont, Gosselin, Filipinni, &
Lassonde, 2009). In a study conducted by Gosselin
et al. (2006), ALLR waveforms were examined in 30 ath-
letes that included 20 symptomatic and asymptomatic
athletes with a history of concussion and 10 athletes
without concussion (controls). The results of the study
revealed significantly reduced the amplitude of N1, P2,
and P3 waveforms and delayed latency of P3 in both
symptomatic and asymptomatic concussed athletes com-
pared with athletes without a history of concussions. In a
similar study, Thériault et al. (2009) compared P3a and
P3b waveforms in 30 participants, who were recruited
from various college sports teams (athletes from football,
basketball, and volleyball teams) and divided into three
groups: a nonbrain-damaged control group, a recently
concussed group (examined between 5 and 12 months
after the last concussion), and a late concussed
group (examined between 22 and 60 months after the
last concussion). A three-tone auditory oddball

paradigm was used to record event-related potentials
(i.e., P3a and P3b). A neuropsychological battery was
also administered to all three groups, which comprised
of a symbol digit modality test, a controlled oral word
association test, a verbal learning test, a brief visuo-
spatial memory test, a test for visual search and inhib-
ition, and an orientation test. The findings showed a
significant amplitude reduction of the P3a and P3b wave-
forms in the recently concussed group when compared
with the nonbrain-damaged control athletes. On the
other hand, P3a and P3b amplitudes in the late con-
cussed group were equivalent to the nonbrain-damaged
control group. None of the neuropsychological tests
showed a significant difference among the three groups.
The results indicate that despite functioning within a
normal range on neuropsychological tests and sports
activities, concussed athletes may still exhibit subtle def-
icits in auditory information processing within 12
months of head injury, which is identified by sensitive
electrophysiological tests like the ALLR.

ALLR studies discussed earlier highlight the potential
sensitivity of P3 as a marker of auditory attention and
auditory memory deficits in participants with mTBI.
The conflicting results of the studies that did not show
a significant difference between individuals with mTBI
and controls in terms of P3a and P3b amplitude and
latency (Potter & Barrett, 1999; Potter, Bassett, Jory, &
Barrett, 2001) can be attributed to multiple differences in
experimental protocol and different study populations.
Taken together, findings of AEP studies involving ath-
letes with mTBI are critical for three main reasons. First,
athletes with a history of concussion and exhibiting no
symptoms may continue to have cognitive deficits related
to early and late stages of auditory processing. Second,
the absence of symptoms or the performance on neuro-
psychological tests may not be valid indicators for deter-
mining return to play. Third, AEPs are sensitive to
indexing potential cognitive changes accompanying
mTBI, even in the absence of reported symptoms and
following a longer time interval (few months to several
years) postinjury (Elting, Naalt, Weerden, Keyser, &
Maurits 2005; Segalowitz et al., 2001; Solbakk et al.,
1999). An overview of important research studies index-
ing AEPs in mTBI is provided in Table 2.

Future Implications

Neurocognitive deficits accompanying mTBI may be
transient, subtle, and complex, involving problems with
attention, working memory, episodic memory, process-
ing speed, fluid reasoning, and executive functioning
(Tulsky et al., 2017). Current limitations of neuropsycho-
logical and neuroimaging assessment tools may result in
an underdiagnosis of mTBI, leading to challenges in
acute management, long-term recovery, and

Washnik et al. 7
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rehabilitation for people with mTBI. These limitations
can be addressed to some extent by including AEPs in
the standard test battery of assessment tests in mTBI.
The inclusion of AEPs in a standard test battery is sug-
gested because AEPs are not an independent diagnostic
tool for mTBI and have certain limitations such as tar-
geting only auditory sense modality and providing less
spatial or localizing information than neuroimaging
tests. In addition, the clinical usefulness of AEPs in the
assessment of mTBI is limited by the lack of standar-
dized experimental paradigms. Nevertheless, various
waveforms of AEPs offer a promising assessment proto-
col as a simultaneous or supplemental tool in recording
accompanying neural events in conjunction with other
neuroimaging tests in mTBI. The range of neurocogni-
tive deficits observed in people with mTBI may also be a
result of problems in the processing of auditory informa-
tion itself (since cognitive and auditory domains are
interrelated in tasks of information processing, as in
auditory comprehension). However, it is likely that def-
icits resulting from mTBI may encompass both neuro-
cognitive and auditory domains, depending on the site
and the extent of neurotrauma. AEPs offer a highly sen-
sitive index to measure potential auditory deficits in
mTBI, thus providing enhanced information for
making clinical decisions. The high rate ABR is sensitive
to changes in synaptic efficiency, secondary to ischemic
changes, and may identify subtle synaptic impairment
associated with mTBI (Podoshin et al., 1990). The sensi-
tivity of high rate ABRs could be enhanced by manip-
ulating stimulus parameters and incorporating newer
techniques like maximum length sequencing and con-
tinuous loop averaging deconvolution. Future studies
are warranted to identify the influence of these tech-
niques in the detection of deficits in patients with
mTBI. The attention and memory deficits in mTBI
patients could be associated with impaired sensory
gating. The P50 waveform of the AMLR is a sensitive
parameter to identify sensory gating deficits in partici-
pants with mTBI (Arciniegas et al., 2000). The clinical
potential of P50 needs to be explored in future studies. A
recent study examined the processing of fundamental
frequency using FFRs in children with concussions and
suggested that FFRs could be used as a biological
marker for sports-related concussions (Kraus et al.,
2016). There is a need to validate FFRs in different
types of mTBI populations. The P3 waveform and its
subtypes, P3a and P3b, are viable tools for investigating
the integrity of sensory pathways, including their effi-
ciency for conducting auditory inputs and the covert
aspects of information processing, auditory memory,
and auditory attention (Eierud et al., 2014). Despite
the efficacy of P3, it is not used widely or routinely in
general clinical neurology. One of the major barriers
in clinical utility of all these promising AEP waveforms

in mTBI assessment is a lack of standard testing para-
digms. The development of standard testing paradigms
for high rate ABR, FFR, P50, and P3 waveforms is the
next step in considering AEPs as a clinical tool in mTBI
assessment protocols.

Conclusions

Structural and functional brain changes following mTBI
entail both acute and long-term neurocognitive implica-
tions, regardless of the etiopathology and the extent of
the neuronal injury. Conventional neuropsychological
tests and neuroimaging techniques may not be sensitive
or specific enough in delineating varied cognitive deficits
and neural correlates underlying these deficits. AEPs are
cost-effective, easily accessible at most clinical care cen-
ters, and sensitive to indexing neural events accompany-
ing performance on cognitive tasks. Including AEPs as
part of the standard assessment tools will provide con-
current validity by offering triangulation of data from
neuroimaging and neuropsychological tests, resulting in
better diagnostic outcomes for people with mTBI. This
step will be crucial in performing comprehensive evalu-
ations of neurocognitive profiles of people with mTBI for
meeting acute management and rehabilitation goals as
well as identifying predictors for mTBI recovery.
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